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Disclaimer

This software is distributed “as is” and the authors do not take any responsability for
possible errors derived from its use by others. Apply it with care and never trust the
output without a careful meditation. HAZEL can be freely used provided that its ori-
gin is properly acknowledged and the reference Asensio Ramos, Trujillo Bueno & Landi
Degl’Innocenti (2008; ApJ 683, 542) is cited and acknowledged in any publication achieved
with it. Before using HAZEL we recommend the user to read carefully this paper and the
previous one by Trujillo Bueno & Asensio Ramos (2007; ApJ 655, 642). Please, send
us bug reports, comments and suggestions of possible improvements. We point out that
HAzEL will be improved over the years (e.g., by extending it to more realistic radiative
transfer problems), but it is now ready for a number of interesting applications in solar
and stellar physics.



1 Introduction

1.1 Description

HAZEL (an acronym for HAnle and ZEeman Light) is a computer program for the synthesis
and inversion of Stokes profiles caused by the joint action of atomic level polarization
and the Hanle and Zeeman effects. It is based on the quantum theory of spectral line
polarization, which takes into account rigorously all the relevant physical mechanisms and
ingredients: optical pumping, atomic level polarization, level crossings and repulsions,
Zeeman, Paschen-Back and Hanle effects. The code is written in standard Fortran 90.
Its parameters are passed using four configuration files that can be manually edited.
These configuration files are heavily commented, so that their edition should be an easy
task. In any case, two front-ends coded in IDL are given as a part of the distribution
in order to facilitate a user-friendly execution of the program. A parallel version of the
code using Message Passing Interface (MPI) is also available. This manual considers both
distributions.

1.2 Credits

The code has grown since the first version thanks to the suggestions of many people.
We thank Rebecca Centeno Elliot, Yukio Katsukawa, Marian Martinez Gonzélez, Rafael
Manso Sainz and Tom Schad for their help on testing the code and proposing (and partially
coding, in some cases) some of the options of the code.

2 Uncompressing and compiling Hazel

2.1 Serial version

The package comes in a single compressed file hazel.tar.gz. After unpacking with tar
zxvf hazel.tar.gz, the HAZEL directory will contain the following subdirectories:

1. Source contains the Fortran 90 sources and a makefile that can be used to build
the binary file.

2. Run contains a directory tree structure with the appropriate configuration files to
run the code in command line mode.

3. Widget_Synth contains all the files that are needed to run the IDL front-end for the
synthesis problem.

4. Widget_Inv contains all the files that are needed to run the IDL front-end for the
inversion problem.

5. IDL_routines contains some IDL routines that are needed by the front-ends.

6. Manual contains this manual.



The code has been tested on Linux platforms using the Intel Fortran Compiler (ifort)
and the free GFortran compiler. The source code is in the Source/ directory. The
compilation is performed with the supplied makefile. It is quite simple and easy to
modify, and contains additional comments about compiling. The default compiler is the
ifort, although you can use any other compiler through the variable COMPILER. In order
to obtain the executable file, just type:

make all

After compiling and linking, the executable is copied to the HAZEL Run/, Widget _Synth/
and Widget_Inv/ directories. Running the program in the Run/ directory should produce
the correct output depending on the exact form of the input files.

The generated object and module files can be cleaned typing:

make clean

2.2 Parallel version

The package also decompresses the P-HAZEL directory tree that will contain the following
subdirectories:

1. SourceMPI contains the Fortran 90 sources and a makefile that can be used to build
the binary file.

2. RunMPI contains a directory tree structure with the appropriate configuration files
to run the code in command line mode.

The source code is in the SourceMPI/ directory. The compilation depends on the
precompiled library NetCDF! for reading and writing output files. NetCDF is a standard
for platform independent binary files that you need to have installed in your system. The
compilation is performed with the supplied makefile. It is quite simple and easy to mod-
ify, and contains additional comments about compiling. The default compiler is mpif90,
although you can use any other compiler through the variable COMPILER. The variables
NETCDF_INCLUDE and NETCDF_LIB have to point to the include and 1ib directories of the
NetCDF distribution.

The code makes use of the MPI package for parallelization, so it has to be installed
on your system. In order to obtain the executable file, just type:

make

After compiling and linking, the executable is copied to the P-HAZEL RunMPI/ directory,
where the code is run. Running the program in the RunMPI/ directory should produce
the correct output depending on the exact form of the input files.

The generated object and module files can be cleaned typing:

make clean

'http://www.unidata.ucar.edu/software/netcdf/



The code is run from the RunMPI directory. Use your MPI launcher to select the
number of processors. For example:

mpiexec -n 50 hazel_mpi config_inversion.dat 2000 5000
The code admits up to three command line parameters:
e Filename with the main configuration file.

e Starting pixel of the inversion. This is used if you want to rerun the inversion of
some pixels.

e Final pixel of the inversion. This is used if you want to rerun the inversion of some
pixels.

See §6 for details on the input files.

3 Input files

HAZEL is controlled via four configuration files. All configuration files are fully com-
mented, so that changing any parameter should be an easy task. In the following, we
describe them step by step.

3.1 config inversion.dat

This file can be considered as the main configuration file and it is the only one that has to
have a fixed name. This file is used to indicate the names of the input files, the names of
the output files, verbosity level and to decide whether HAZEL is to be applied to work in
synthesis or inversion mode. Using the example included in the present version of HAZEL,
we analyze one by one all the inputs.

# Input model file
’ATOMS/helium.mod’

Definition of the file with the atomic model. See §4 for an explanation of the file format.

# Initial parameters file
’init_parameters.dat’

Definition of the file with the initial parameters of the problem. The values of the param-
eters in this file are taken as initial values for the inversion or for the synthesis. See §3.2
for a detailed description of the file.

# Range of parameters for the DIRECT method
’direct_range.dat’

This file is used to define the lower and upper limits of the intervals inside which the
DIRECT method searches for the minimum of the x? function. See §3.3 for details.



# Output for the upper level rho"K_Q(J,J’) in the vertical reference frame
’ATOMIC_POL/vertical_upper.rho’

# Output for the lower level rho"K_Q(J,J’) in the vertical reference frame
>ATOMIC_POL/vertical_lower.rho’

# Output for the upper level rho"K_Q(J,J’) in the mag. field reference frame
’ATOMIC_POL/magnetic_upper.rho’

# Output for the lower level rho"K_Q(J,J’) in the mag. field reference frame
’ATOMIC_POL/magnetic_lower.rho’

The previous lines define the output files where the spherical tensor components of the
density matrix are saved. Note that the code stores only the density matrix elements of
the upper and lower level of the desired transition. The elements of the atomic density
matrix depend on the chosen reference system, and the two most desired reference systems
are the one in which the quantization axis is chosen along the solar local vertical direction
and the one in which the quantization axis is chosen along the magnetic field vector.

# Output absorption/emission coefficients
> INVERTED/rtcoef . emer’

# Output absorption/emission coefficients neglecting atomic polarization
> INVERTED/rtcoef _noatompol.emer’

The emission coefficients €7 v, the absorption coefficients 17 ¢ v and the anomalous
dispersion coefficients pg v for each wavelength point are saved in these files. The first
file includes the effects of atomic level polarization, while the second one neglects its
influence.

# File with the observed profiles
’OBSERVATION/test.prof’

When using the code in the inversion mode, this file is the one used for the input of the
observed Stokes profiles. The format of this file depends on which version of the code is
used. For HAZEL, it is very simple. The first line indicates the number of wavelength
points. Then, a table with nine columns gives the value of the wavelength shift with
respect to the center of the multiplet, the Stokes vector at each wavelength normalized
to the maximum intensity, and an estimation of the noise standard deviation at each
wavelength normalized to the maximum intensity. See the example file contained in the
HAZEL distribution for more details. Note that these lines have to be present in the input
file even if HAZEL is used in synthesis mode.
When using P-HAZEL, the input file is more complicated and is described in §6.

# File with the inverted profiles
’test.inversion’



# File with the parameters from the inversion
’test.parameters’

The final Stokes profiles resulting from the synthesis or inversion options is saved in the file
indicated in the first line. The format is the same as that explained for the file containing
the observation. When HAZEL is run in inversion mode, the final inferred parameters
of the model are saved in the file indicated in the second line. Again, for P-HAZEL the
output files are described in §6.

# File that sets the parameters to invert
’invert_parameters.dat’

This file defines which parameters to invert in the inversion mode, together with the
algorithm to be used in each cycle and the weight used for each Stokes parameter.

# Verbose mode (0-> no, 1-> yes)
0

Flag to connect or disconnect the verbose mode. For the inversion of Stokes profiles
affected by atomic level polarization it is sometimes useful to turn the verbose mode on
for analyzing the process of the code while calculating.

# Linear system solver (0-> LU, 1-> CG)
0

This flag is used to choose the algorithm that solves the linear system of statistical equi-
librium equations. For relatively simple models, the LU decomposition does a very good
job in terms of speed. If the number of unknowns (i.e., of p¢§(J, J') elements) turns out
to be of the order of or larger than 103, conjugate gradients (CG) methods are a much
better option. We recommend to use the LU decomposition when possible and move to
the CG solution only when necessary. The CG solution are based on routines developed
by Dr. Mark K. Seager from Lawrence Livermore National Lab.

# Optically thin (0), slab no-MO (1), M-E (2), slab DELOPAR (3),
simplified slab (4), exact slab (5)
5

This flag is used to choose the level of approximation for the solution of the radiative
transfer equation. The meaning of each option is explained below in §7.1.

# Synthesis mode -> 0 , Inversion mode -> 1
0

This flag controls the working mode of the code (synthesis or inversion).



3.2 1init parameters.dat

This important file establishes the parameters of the model, together with the definition
of the scattering geometry. It includes also flags to turn on or discard different physical
mechanisms. In the synthesis mode, the values in this file are used to carry out the
synthesis. In the inversion mode, the values in this file are chosen as initial conditions
for the inversion for those parameters that are left free. For those that are left fixed, the
code uses the values defined in this file. We explain them step by step.

# Include stimulated emission (0-> no, 1-> yes)
1

This flag is used to take into account or discard the effect of stimulated emission in the
emergent Stokes profiles. Although stimulated emission is negligible for most solar it can
be of importance for very strong radiation fields. We recommend to use always 1 since
the computational time is barely affected by this flag.

# Include magnetic field (0-> no, 1-> yes)
1

This flag is used to slightly reduce the computational work for the non-magnetic case
because, if set to zero, the magnetic kernel [see Eq. (12)] is not calculated.

# Include depolarization rates (0-> no, 1-> yes)
0

# Value of delta if depol. rates are included (not used if prev. value = 0)
1.414

In the present version of HAZEL it is possible to include the effect of depolarizing col-
lisions only in the ground level of the atomic system. In case the effect of collisions is
to be accounted for, set the first parameter to 1 and give the collisional rate in the next

parameter in units of s7.

# Include Paschen-Back effect (0-> no, 1-> yes)
1

The effect of a magnetic field on the energy levels of the atomic system can be calcu-
lated under the approximation of the linear Zeeman effect or in the general case of the
intermediate Paschen-Back effect. If this flag is set to 0, the approximation of the linear
Zeeman effect is used and no perturbations between different J levels of a term are taken
into account. If the flag is set to 1, the general theory of the Paschen-Back effect is used
to calculate the wavelength positions and the strengths of the 7 and ¢ components. The
difference in the computational work between both approaches is rather small.

# Number of slabs (1-> 1 slab, 2-> 2 slabs with same B, 3-> 2 slabs with different B,



HAZEL can be used using one slab (option 1) of constant physical properties or two
(options 2 and 3 and -2). The difference between options 2 and 3 is that option 2 considers
both slabs to have exactly the same field while option 3 considers two different fields. As
a consequence, the computing time is smaller in option 2. In both options, the second
slab is placed in front of the first one, so that the boundary condition of the second slab
is the emergent radiation from the first. In option -2, the radiation emerging from both
slabs is added weighted with a filling factor, which is indicated below.

# Magnetic field strength [G], thetaB [degrees], chiB [degrees]
0.3d0 90.4d0 90.d0

The magnetic field vector is defined here. The strength in G and the inclination and
azimuth angles in degrees define the magnetic field vector. The angles are defined with
respect to the vertical direction in the atmosphere, as shown in Fig. 3. Note that, if
the azimuth of the field is set to 999, the random azimuth solution is obtained following
the strategy explained in Appendix C of Belluzzi et al. (2007). If two slabs are used
(setting option 3 or -2 above), put the two field vectors next to each one in the format

(B,0s,x8)1(B,05,XB)2-

# Apparent height (if <0) or real height (if >0) of the atoms in arcsec
3.d0

The tensors J{ and JZ that quantify the mean intensity of the radiation field and its
anisotropy are calculated assuming a standard solar center-to-limb variation (CLV) and
taking into account geometrical effects. This parameter gives the height at which the slab
of atoms is placed with respect to the surface of the Sun.

# Optical depth of the slab in the maximum of I (slab) or strength of the line (ME)
1.0d0

This quantity is the optical depth of the slab at the wavelength position of the maximum
absorption or emission in Stokes I. For example, for the 10830 A multiplet of He 1, this is
the position of the red blended component. In case the Milne-Eddington solution of the
radiative transfer equation is used, this is equivalent to the strength of the line, usually
referred to as ny. If two slabs with option 2 or 3 are used, put the two optical depths
together. If option -2 is used, then add the filling factor as a third number.

# Source function gradient (only ME)
9.4d0

If the Milne-Eddington solution is used, this number is the gradient of the source function.
We point out that in the present version of HAZEL the Milne-Eddington solution is only
valid when neglecting the presence of atomic level polarization. For the moment, the
slab model is the one which allows the user to account for the joint action of the atomic
level polarization and the Hanle and Zeeman effects. If two components (one after the
other) are used, this number is a multiplicative factor for the source function of the second
component. This allows us to simulate self-absorption in the code.

10



# Boundary Stokes parameters (I0,Q0,U0,VO0)
4.098d-5 0.d0 0.d0 0.4d0

Boundary conditions for the Stokes vector used in the solution of the radiative trans-
fer equation. If the radiation field is the photospheric continuum, the IDL routine
IDL_routines/solar_field.pro can be used to return an estimation.

# Transition where to compute the emergent Stokes profiles
1

From the transitions defined in the atomic model, the code calculates the emergent Stokes
profiles for the chosen transition. For the moment, only one transition at a time is allowed.
We plan to extend this to synthesize several lines.

# Include atomic level polarization? (0-> no, 1-> yes)
1

The synthesis or inversion options can be used taking into account or neglecting the
presence of atomic level polarization. This flag controls it.

# Observation angle with respect to the local solar vertical theta,chi,gamma [degrees
0.d0 0.d0 90.4d0

The line-of-sight direction is defined using the angles described in Fig. 3. All angles are

given in degrees.

# Wavelength axis: minimum, maximum and number of grid points
-3.d0 2.5d0 200

In case the code is run in synthesis mode, this line is used to set the lower and upper limits
(in cm™1) of the wavelength axis. The last parameter gives the number of wavelength
points to be used. In the inversion mode, the wavelength axis is chosen automatically
from the observation and these numbers are overridden.

# Line wavelength [A], Doppler velocity [km/s] and damping [a]
10829.0911d0 6.5d0  0.4d0

This line is used to define the wavelength of the multiplet (wavelength of the (L, S) —
(L', S") transition), the Doppler width of the line in km s™' and the reduced damping
constant. If two slabs (through options 3 or -2) are used, add the Doppler width of the
second component next to the first one. Concerning the reduced damping constant, if
its value is negative, it is computed using the natural damping and using the Doppler
broadening. The absolute value of the input value is used then as an enhancement factor
(so you should use —1 is you want to use the natural width).

# Macroscopic velocity [km/s] (>0 is a redshift)
0.d0

11



This defines the wavelength shift produced by the presence of a bulk motion of the plasma.
Note that positive velocities imply redshifts. If two components (options 2, 3 or -2) are
used, put the two bulk velocities.

# Include magneto-optical effects in the RT
1

It is possible to include (1) or neglect (0) the influence of the anomalous dispersion
coefficients pg v in the calculation of the emergent Stokes profiles.

# Include stimulated emission in the RT
1

This flag controls whether we include (1) or neglect (0) the influence of the stimulated
emission in the calculation of the emergent Stokes profiles.

3.3 direct_range.dat

The DIRECT global optimization method is used to give a first estimation of the param-
eters from which the Levenberg-Marquardt method is applied to locate the minimum of
the y? surface. The behavior of the DIRECT method is controlled with this file, in which
we must specify the upper and lower limits of the model parameters, together with details
about the stopping criterion. In the following, we describe all the options in detail.

# Output file
’direct.location’

The DIRECT method tries to evaluate the merit function x? as few times as possible.
The code saves in this file the values of the parameters at which the algorithm has carried
out the evaluation of the merit function. This can be useful for analyzing the presence of
ambiguities. In this case, the method will clearly mark the position of the possible solu-
tions by evaluating the merit function more times in the surroundings of the compatible
solutions. Note that this lines are absent on the P-HAZEL configuration file.

# Maximum number of function evaluations (<0 -> don’t use this criteria)
-1

# Reduction in the volume (<0 -> don’t use this criteria, typically 0.01)
0.001

The previous two lines are used to indicate the stopping criterion for the DIRECT method.
An early stop will probably give a first estimation of the solution that is far from the final
result. Letting the code run for many iterations may degrade too much the computing
time because of the poor local convergence properties of the DIRECT scheme. The first
option permits the user to stop after a fixed number of evaluations of the merit function.
The second option permits the user to stop when the ratio between the hypervolume
where the global minimum is located and the original hypervolume is smaller than the
given threshold. We have verified that 0.001 gives very good results. Setting one of the
two parameters to values < 0 will disconnect it.

12



# Magnetic field (0-Bmax)
800.d0 1100.4d0

# thetab (0 .. 180)
30.d0 180.d0

# chib (0 .. 180)
-180.40 0.40

# vdopp (0 .. 20)
2.d0 7.d0

# dtau (0 .. 5)
0.d0 1.d0

# delta_collision (0 .. 18)
0.d0 18.d0

# vmacro (-10 .. 10)
-10.40 10.40

# damping (0 .. 4)
0.d0 4.d0

# beta (0 .. 10)
0.d0 1.d0

# height (0 .. 100)
0.d0  100.d0

# dtau2 (0 .. 5)
0.d0 2.d0

# vmacro2 (-10 .. 10)
25.d0 35.d0

# Magnetic field 2 (0-Bmax)
800.d0 1100.d0

# thetab 2 (0 .. 180)
30.d0 180.d0

# chib 2 (0 .. 180)
-180.40 0.40

13



# vdopp 2 (0 .. 20)
2.d0 12.4d0

The previous lines define the space of parameters where the DIRECT method will look
for the global minimum.

3.4 invert parameters.dat

This file is used to set the behavior of the inversion mode: the structure of the inversion
cycle, setting the free and the fixed parameters.

# Maximum number of iterations
20

This parameter sets the maximum number of Levenberg-Marquardt (LM) iterations to be
carried out in each cycle. Sometimes the LM scheme stops before reaching the maximum
number of iterations because the relative change in the parameters from one iteration to
the next is below 1074

# Number of cycles
2

The optimal iteration scheme is composed of combinations of cycles. In the first cycle,
the DIRECT method is used to give a first estimation of the solution. In the second
cycle, the LM method is used to refine the solution until arriving to the final one. This
parameter sets the number of cycles used.

=+

Invert the magnetic field strength
111

—

# Invert the magnetic field inclination
1111

# Invert the magnetic field azimuth
1100

# Invert the Doppler width
0000

# Invert the optical depth or strength of the line
0000

# Invert the D”2 of the lower level
0000

# Invert the macroscopic velocity

14



0000

# Invert the damping
0000

# Invert the source function gradient
0000

# Invert the height of the He atoms
0000

# Invert the optical depth or strength of the line of component 2
0000

# Invert the macroscopic velocity of component 2
0000

# Invert the magnetic field strength of component 2
0011

# Invert the magnetic field inclination of component 2
0011

# Invert the magnetic field azimuth of component 2
0011

# Invert the Doppler width of component 2
0000

Depending on the number of cycles, the previous lines define whether a parameter is
inverted (setting a 1 in the corresponding cycle) or kept fixed to the value given in the
init_parameters.dat file (setting a 0 in the corresponding cycle). The number of 0s/1s
in each line has to be larger or equal to the number of cycles.

# Weights for Stokes I in each cycle
1.d0 1.d0 1.d0 1.d0

# Weights for Stokes Q in each cycle
1.d0 1.d0 1.d0 1.dO

# Weights for Stokes U in each cycle
1.d0 1.d0 1.d0 1.d0

# Weights for Stokes V in each cycle
1.d0 1.d0 1.d0 1.d0

15



Since the inversion is based on the gradient descent minimization of the x? merit func-
tion and not on sampling methods, it is important to modify sometimes the weight of
each Stokes vector in order to increase the sensitivity of the y?-function to some model
parameters. The code allows to change the relative weight of each Stokes vector in each
cycle.

# Inversion modes (1-> LM, 2-> DIRECT, 3-> PIKAIA)
2121

The optimization method used in each cycle is set in this line. Note that the scheme
DIRECT+LM has been empirically proved to be quite optimal. The possibility to use
genetic optimization based on the Pikaia algorithm is still in a preliminary phase. How-
ever, the large number of function evaluations that any genetic algorithm needs makes it
difficult to beat the DIRECT+LM combination.

4 Atomic models

Atomic models have to be defined in HAZEL in order to carry out a calculation. This
section describes the model atom file in detail by using the example helium.mod that is
included in the present version of HAZEL.

2
5

The previous two numbers define the general properties of the atom. The first line of the
file is equal to 25, where S is the value of the spin of the terms. In the example, S = 1.
At present, the code does not treat transitions between terms of different multiplicity
which are, otherwise, of reduced importance due to their small transition probability.
The second line contains the number of terms included in the model atom. This example
represents the triplet system of He 1 with the lowest five terms, 2s®S, 3s3S, 2p®P, 3p*P
and 3d3D

1 0
0.00
2 2
0.00
-0.987913
-1.064340
3 0
0.00
4 2
0.00
-0.270647
-0.292616
5 4

16



0.00
-0.044187
-0.046722

The previous lines define the term levels included in the model. The information for each
term consist of a line with an index (0,1,2,...) that is used just to label each term and
the value of 2L, where L is the value of the electronic orbital angular momentum. Then,
for each term, we must supply a list containing the energy separation in cm~! between
each J-level and the level with the smallest absolute value of J. In case only one value of
J is possible in the term, just put 0 in the energy difference.

4

1 1 2 1.02247 10829.0911 1.0000000 1.0000000 0.0000000
2 1 4 9.478d6 3888.6046 0.2000000 1.0000000 0.0000000
3 2 3 2.780d7 7065.7085 1.0000000 1.0000000 0.0000000
4 2 5 7.06047 5875.9663 1.0000000 1.0000000 0.0000000

Finally, the list of transitions has to be supplied. The first number indicates the num-
ber of radiative transitions included in the model. Then, the list contains the following
numbers for each transition: index number, index of lower level, index of upper level, Ein-
stein coefficient for spontaneous emission A,; of the transition, modification factor f(n),
modification factor f(w) and value of J!/JJ. The modification factors f(n) and f(w)
are multiplied by the mean number of photons per mode n and the anisotropy factor w,
respectively. Since HAZEL uses the value of n and w calculated from the tabulated solar
CLV and taking into account geometrical effects, these factors can be used to analyze
the behavior of the emergent Stokes profiles when, for some reason, the anisotropy or the
intensity of the radiation field is increased or decreased by an arbitrary factor. Finally, if
the radiation illuminating the atoms has non-zero net circular polarization, it is possible
to include its effect in the statistical equilibrium equations by giving the value of J}/J§.

5 Graphical front-ends

Although the code can be run in command line by modifying by hand the input files,
HAZEL contains also two user friendly front-ends (GUI) for the simple execution and
analysis of the results. Note that the directory IDL_routines has to be in your IDL path.

5.1 Synthesis

It is placed in the directory Widget_Synth and it is invoked with the following commands:

IDL> .r hazel
IDL> hazel

Figure 1 shows the GUI for the synthesis mode. All the parameters explained in the
previous sections (fundamentally those in §3.2) are present in the GUI. All the parameters
are very simple to modify (when changing numerical values in the GUI, always remember
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Figure 1: Screen dump of the graphical front-end used for the synthesis.

to press Return to activate the change) and clicking on Calculate, the window is updated
with the new Stokes profiles. The GUI also shows the value of the solar radiation field
when the inclination of the line-of-sight and the wavelength of the multiplet is changed.
The value (which can be introduced in the value of I as a boundary condition) is given
next to the height of the slab and indicated with the label “Allen”. In case of crashes,
the GUI can be restarted with the following command:

IDL> .r hazel
IDL> hazel, /reset

5.2 Inversion
It is placed in the directory Widget _Inv and it is invoked with the following commands:

IDL> .r hazel_inv
IDL> hazel_inv

Again, in case of crashes, the GUI can be restarted with the following command:

IDL> .r hazel_inv
IDL> hazel_inv, /reset

The GUI for the inversion is more complex because of the large amount of parameters
that have to be changed. For this reason, the GUI is composed of 4 pages, as indicated
in Fig. 2.
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Figure 2: Screen dump of the graphical front-end used for the inversion.

The first page is used to select the output file, together with the atomic system and
multiplet to be used. Finally, the button Run inversion will call HAZEL and update the
state of the best model in the plot window.

The second page is used simply to load the file with the observed Stokes profile. A
button is also available to plot the observed data.
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The third page controls the behavior of the DIRECT algorithm. It is essentially a
graphical representation of the direct _range.dat file.

Finally, the fourth page controls the behavior of the cycles, the value of the fixed
parameters, the weights for each Stokes parameter and the level of physical realism intro-
duced in the simulation.

6 P-Hazel input/output files

Both input and output files for P-HAZEL are NetCDF files.

6.1 Input files

The input file constains the observations and information about the observing position
and boundary condition. The file consists of the following variables:

e lambda: vector of size nlambda containing the wavelength axis with respect to the
center of the multiplet.

e map: array of size (npizel,8,nlambda) containing the Stokes vector (I,Q,U, V') and
the associated standard deviation of the noise (0,00, 0v, oy ).

e boundary: array of size (npizel,/) containing the boundary condition for every in-
verted pixel.

e height: vector of size npizel which contains the height of the slabs for every pixel.
e obs_theta: vector of size npizel which contains the observing angle 6 for every pixel.

e obs_gamma: vector of size npizel which contains the observing angle v that defines
the positive reference for Stokes @) for every pixel.

e mask: array of size nz,ny which tells whether this pixel will be inverted.

e pars: array of size npizel,npars which contains the initial value for the model pa-
rameters. These will be used to reinvert some pixels or, for instance, to refine the
ambiguous solutions.

The routine gen netcdf.pro on the directory IDL_routines shows a function that gen-
erates such a file by passing all the variables as parameters.

6.2 QOutput files

The results of the inversion are saved on two files defined on the config_inversion.dat
configuration file. The file with the inverted profiles contains the following variables:

e lambda: vector of size nlambda containing the wavelength axis with respect to the
center of the multiplet.
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e map: array of size (npizel,4,nlambda) containing the synthetic Stokes vector (I, Q, U, V)
for every pixel.

The file with the inverted parameters contains the following variable:

e map: array of size (npizel,ncolumns) containing the parameters of the inversion.
The number of columns depends on the selected model:

e One-slab: nine columns with the vector (B, 0g, x5, h, T, Uth, @, Umac, ).

e Two-slab with same magnetic field: eleven columns with the vector
(B, 0B7 XB, h7 [7_]17 [7—]27 Uth, @, [Umac]ly [Umac]Za 5)

e Two-slab with different magnetic field: fifteen columns with the vector
([B1,[08]1, [xBl1, [Bl2, [08]2, [xBl2: b, [T]1, [Tl2; [ven] 1, [Venl2;s @, [Vmac 1, [Vmac)2, B)-

The file read results.pro on the RunMPI directory shows how to read the files from IDL.

6.3 Ambiguities

You have to remember that the results of Hazel are potentially affected by ambiguities
and you have to take them into account. There is an utility written in IDL that, given
an inverted map, obtains all the other solutions which are ambiguous in the saturation
regime. This can be called, including the appropriate paths and discarding the final .nc
extension, by:

IDL> disamb, ’file_with_inversions’, ’file_with_observations’, angle(bs

where angleObs is the observation angle € (so that it is 90° for an observation exactly at
the limb. This program can be called with the additional /gen files_inversion, which
then generates a set of observations, configuration files and a file to run P-HAZzEL. This
is useful in case the line is not in the saturation regime. In this case, the ambiguous
solutions that are found by the code are not strictly valid and one should refine them
with a final LM cycle in which B, g and xp are left free. The solution to the ambiguities
in the saturation regime is shown in Section 9.

7 Basic Equations

We consider a constant-property slab of atoms, located at a height h above the visible
solar “surface”, in the presence of a deterministic magnetic field of arbitrary strength
B, inclination g and azimuth yp (see Fig. 1). The slab’s optical thickness at the
wavelength and line of sight under consideration is 7. We assume that all the atoms
inside this slab are illuminated from below by the photospheric solar continuum radiation
field, whose center-to-limb variation has been tabulated by Pierce (2000). The ensuing
anisotropic radiation pumping produces population imbalances and quantum coherences
between pairs of magnetic sublevels, even among those pertaining to the different J-levels
of the adopted atomic model. This atomic level polarization and the Zeeman-induced

21



wavelength shifts between the 7 (AM = M, — M; = 0), ope (AM = +1) and 0yeq
(AM = —1) transitions produce polarization in the emergent spectral line radiation.

In order to facilitate the understanding of the code, in the following we summarize the
basic equations which allow us to calculate the spectral line polarization taking rigorously
into account the joint action of atomic level polarization and the Hanle and Zeeman
effects. To this end, we have applied the quantum theory of spectral line polarization,
which is described in great detail in the monograph by Landi Degl’Innocenti & Landolfi
(2004). We have also applied several methods of solution of the Stokes-vector transfer
equation, some of which can be considered as particular cases of the two general methods
explained in §6 of Trujillo Bueno (2003).

7.1 The radiative transfer approach

The emergent Stokes vector I(v, ) = (I,Q,U, V)T (with f=transpose, v the frequency
and €2 the unit vector indicating the direction of propagation of the ray) is obtained by
solving the radiative transfer equation

d%I(y,Q) — (1, Q) — K(v, QL1 Q), (1)

where s is the geometrical distance along the ray under consideration, (v, ) = (ez, €g, e, ev)!
is the emission vector and

nr NQ Nu nv

K= Ule) nr PV —pPU (2)
Nu —pv M PQ
nv  puv —PQ NI

is the propagation matrix. Alternatively, introducing the optical distance along the ray,
dr = —nds, one can write the Stokes-vector transfer Eq. (1) in the following two ways:

e The first one, whose formal solution requires the use of the evolution operator in-
troduced by Landi Deglinnocenti & Landi Deglinnocenti (1985), is

d

—I=KIT-S 3

dT ) ( )
where K* = K/n; and S = €/n;. The formal solution of this equation can be seen

in eq. (23) of Trujillo Bueno (2003).

e The second one, whose formal solution does not require the use of the above-
mentioned evolution operator is (e.g., Rees et al., 1989)

d

—I =1 — Seg, 4

dr i (4)
where the effective source-function vector S;g = S — K'I, being K = K* —1
(with 1 the unit matrix). The formal solution of this equation can be seen in eq.
(26) of Trujillo Bueno (2003).
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Figure 3: The geometry for the scattering event. The Z-axis is placed along the vertical
to the solar atmosphere. The magnetic field vector, B, is characterized by its modulus
B, the inclination angle #g and the azimuth yg. The line-of-sight, indicated by the
unit vector €2, is characterized by the two angles 8 and y. The reference direction for
Stokes () is defined by the vector e; on the plane perpendicular to the line-of-sight. This
vector makes an angle v with respect to the plane formed by the vertical and the line-of-
sight. In the figures showing examples of the emergent Stokes profiles, our choice for the
positive reference direction for Stokes @) is v = 90°, unless otherwise stated. For off-limb

observations, we have § = 90°, while for observations on the solar disk, we have 6 < 90°.
Note also that y is generally taken to be 0°.
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Once the coefficients €; and ex (with X = Q,U, V) of the emission vector and the
coefficients 7, nx, and px of the 4 x 4 propagation matrix are known at each point within
the medium it is possible to solve formally Eq. (3) or Eq. (4) for obtaining the emergent
Stokes profiles for any desired line of sight. Our computer program considers the following
levels of sophistication for the solution of the radiative transfer equation:

e Numerical Solutions. The most general case, where the properties of the slab vary
along the ray path, has to be solved numerically. To this end, two efficient and ac-
curate methods of solution of the Stokes-vector transfer equation are those proposed
by Trujillo Bueno (2003) (see his eqgs. (24) and (27), respectively). The starting
points for the development of these two numerical methods were Eq. (3) and Eq.
(4), respectively. Both methods can be considered as generalizations, to the Stokes-
vector transfer case, of the well-known short characteristics method for the solution
of the standard (scalar) transfer equation.

e Fzact analytical solution of the problem of a constant-property slab including the
magneto-optical terms of the propagation matriz. For the general case of a constant-
property slab of arbitrary optical thickness we actually have the following analytical
solution, which can be easily obtained as a particular case of eq. (24) of Trujillo
Bueno (2003):

I=e XL, + KT ' (1-¢%7)s8, (5)

where Iy, is the Stokes vector that illuminates the slab’s boundary that is most
distant from the observer. We point out that the exponential of the propagation
matrix K* has an analytical expression similar to eq. (8.23) in Landi Degl’Innocenti
& Landolfi (2004).

e Approzimate analytical solution of the problem of a constant-property slab including
the magneto-optical terms of the propagation matriz. An approximate analytical
solution to the constant-property slab problem can be easily obtained as a particular
case of eq. (27) of Trujillo Bueno (2003):

IT=[1+ 9K ] " [(e71 — UyK') Ly + (War + ¥)S] (6)

where the coefficients ¥, and ¥y depend only on the optical thickness of the slab
at the frequency and line-of-sight under consideration, since their expressions are:
1—e™"

\I/M = —6_7,
T

1—eT"

T

Uy = 1 (7)

Note that Eq. (6) for the emergent Stokes vector is the one used by Trujillo Bueno
& Asensio Ramos (2007) for investigating the impact of atomic level polarization
on the Stokes profiles of the He 1 10830 A multiplet. We point out that, strictly
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speaking, it can be considered only as the exact analytical solution of the optically-
thin constant-property slab problem?. The reason why Eq. (6) is, in general, an
approximate expression for calculating the emergent Stokes vector is because its
derivation assumes that the Stokes vector within the slab varies linearly with the
optical distance. However, it provides a fairly good approximation to the emergent
Stokes profiles (at least for all the problems we have investigated in this paper).
Moreover, the results of fig. 2 of Trujillo Bueno & Asensio Ramos (2007) remain also
virtually the same when using instead the exact Eq. (5), which from a computational
viewpoint is significantly less efficient than the approximate Eq. (6).

e Fxact analytical solution of the problem of a constant-property slab when neglecting
the second-order terms of the Stokes-vector transfer equation. Simplified expressions
for the emergent Stokes vector can be obtained when e;>>¢x and n;>>(nx, px), which
justifies to neglect the second-order terms of Eq. (1). The resulting approximate
formulae for the emergent Stokes parameters are given by eqs. (9) and (10) of
Trujillo Bueno & Asensio Ramos (2007), which are identical to those used by Trujillo
Bueno et al. (2005) for modeling the Stokes profiles observed in solar chromospheric
spicules. We point out that there is a typing error in the sentence that introduces
such egs. (9) and (10) in Trujillo Bueno & Asensio Ramos (2007), since they are
obtained only when the above-mentioned second-order terms are neglected in Eq.
(1), although it is true that there are no magneto-optical terms in the resulting
equations.

e Optically thin limit. Finally, the most simple solution is obtained when taking the
optically thin limit (7<) in the equations reported in the previous point, which
lead to the equations (11) and (12) of Trujillo Bueno & Asensio Ramos (2007). Note
that if Iy, = 0 (i.e., Iy = Xy = 0), then such optically thin equations imply that
X / I=e¢ X / €7.

The coefficients of the emission vector and of the propagation matrix depend on the
multipolar components, pg (J,J"), of the atomic density matrix. Let us recall now the
meaning of these physical quantities and how to calculate them in the presence of an
arbitrary magnetic field under given illumination conditions.

7.2 The multipolar components of the atomic density matrix

We quantify the atomic polarization of the atomic levels using the multipolar components
of the atomic density matrix. We assume that the atom can be correctly described under
the framework of the L-S coupling (e.g., Condon & Shortley, 1935). The different J-levels
are grouped in terms with well defined values of the electronic angular momentum L and
the spin S. We neglect the influence of hyperfine structure and assume that the energy
separation between the J-levels pertaining to each term is very small in comparison with
the energy difference between different terms. Therefore, we allow for coherences between
different J-levels pertaining to the same term but not between the J-levels pertaining

2More precisely, when the optical thickness of the slab is small in comparison with the eigenvalues of
the matrix K'.
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to different terms. As a result, we can represent the atom under the formalism of the
multi-term atom discussed by Landi Degl’Innocenti & Landolfi (2004).

In the absence of magnetic fields the energy eigenvectors can be written using Dirac’s
notation as |SLSJM), where [ indicates a set of inner quantum numbers specifying the
electronic configuration. In general, if a magnetic field of arbitrary strength is present,
the vectors |[JLSJM) are no longer eigenfunctions of the total Hamiltonian and J is no
longer a good quantum number. In this case, the eigenfunctions of the full Hamiltonian
can be written as the following linear combination:

BLSjM) = CH(BLS, M)|BLSJTM), (8)
J

where j is a pseudo-quantum number which is used for labeling the energy eigenstates
belonging to the subspace corresponding to assigned values of the quantum numbers £,
L, S, and M, and where the coefficients C§ can be chosen to be real.

In the presence of a magnetic field sufficiently weak so that the magnetic energy is
much smaller than the energy intervals between the .J-levels, the energy eigenvectors
are still of the form |[3LSJM) (C%(BLS, M) = &;;), and the splitting of the magnetic
sublevels pertaining to each J-level is linear with the magnetic field strength. For stronger
magnetic fields, we enter the incomplete Paschen-Back effect regime in which the energy
eigenvectors are of the general form given by Eq. (8), and the splitting among the various
M-sublevels is no longer linear with the magnetic strength. If the magnetic field strength
is further increased we eventually reach the so-called complete Paschen-Back effect regime,
where the energy eigenvectors are of the form |LSM Mg) and each L-S term splits into a
number of components, each of which corresponding to particular values of (M}, + 2Mg).

Within the framework of the multi-term atom model the atomic polarization of the
energy levels is described with the aid of the density matrix elements

pPE (M, §'M") = (BLSj M |p|BLS;' M), (9)

where p is the atomic density matrix operator. Using the expression of the eigenfunctions
of the total Hamiltonian given by Eq. (8), the density matrix elements can be rewritten
as:
PP (GM, M) = CY(BLS, M)CY,(BLS, M")pP"5 (JM, ' M), (10)
JJ

where pPLS(JM, J'M') are the density matrix elements on the basis of the eigenvectors
|BLSJM).

Following Landi Degl'Innocenti & Landolfi (2004), it is helpful to use the spherical
statistical tensor representation, which is related to the previous one by the following
linear combination:

(S J) = Y CY(BLS, M)CY,(BLS, M')
Ji' MM’
J—M J J' K BLS ( : A Vi
< (FDTIV2E AL G Do )P MM, (1)

where the 3-j symbol is defined as indicated by any suitable textbook on Racah algebra.

26



7.3 Statistical equilibrium equations

In order to obtain the #*%pf(J, J') elements we have to solve the statistical equilibrium
equations. These equations, written in a reference system in which the quantization axis
(Z) is directed along the magnetic field vector and neglecting the influence of collisions,
can be written as (Landi Degl'Innocenti & Landolfi, 2004):

d /
EﬂLSpg(Ja Jl) - —9n Z Z NBLS<KQJJ/7 K/Q/J//J///)ﬁLSpg/ (J//, J///)
K/Q/ J//J///
+ N S (T, J)TABLSKQJ ', BeLeSEK Qe e ;)
BeLeKeQeJeJ,

b e, T [ Te(BLSK QT BuLuSK,Qul L)

BuLuKuQuJuJ{L

Y T(BLSKQJT, BULUSKUQUJUJ;)}

_ Z BLS K’ (J// J///) [RA(BLSKQJJ/K Q J//J///)
K/QIJ/IJ///

Rp(BLSKQJJTK'QJ"J") + RS(BLSKQJJ’K/Q’J”J”’)] . (12)

The first term in the right hand side of Eq. (12) takes into account the influence of the
magnetic field on the atomic level polarization. This term has its simplest expression in
the chosen magnetic field reference frame (see eq. 7.41 of Landi Degl’Innocenti & Landolfi,
2004). In any other reference system, a more complicated expression arises. The second,
third and fourth terms account, respectively, for coherence transfer due to absorption from
lower levels (T 4), spontaneous emission from upper levels (Tg) and stimulated emission
from upper levels (Tg). The remaining terms account for the relaxation of coherences
due to absorption to upper levels (Ry4), spontaneous emission to lower levels (Rg) and
stimulated emission to lower levels (Rg), respectively.

The stimulated emission and absorption transfer and relaxation rates depend explicitly
on the radiation field properties (see eqs. 7.45 and 7.46 of Landi Degl’Innocenti & Landolfi,
2004). The symmetry properties of the radiation field are accounted for by the spherical
components of the radiation field tensor:

_ ?fg > TGRS0 ). (13)

The quantities 725( (,€2) are spherical tensors that depend on the reference frame and on
the ray direction €2. They are given by

T (1,9) = th )DEo(R), (14)

where R’ is the rotation that carries the reference system defined by the line-of-sight €
and by the polarization unit vectors e; and e, into the reference system of the magnetic
field, while D, (R’) is the usual rotation matrix (e.g., Edmonds, 1960). Table 5.6 in Landi
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Degl’Innocenti & Landolfi (2004) gives the T (i, Q) values for each Stokes parameter S;
(Wlth SQ = ], Sl = Q, SQ = U and Sg = V)

7.4 Emission and absorption coefficients

Once the multipolar components #“5p§ (.J, J') are known, the coefficients e; and ex (with

X = Q,U, V) of the emission vector and the coefficients 17, nx, and px of the propagation
matrix for a given transition between an upper term (5L,.S) and an lower term (8L,S) can
be calculated with the expressions of §7.6.b in Landi Degl’Innocenti & Landolfi (2004).
These radiative transfer coefficients are proportional to the number density of He 1 atoms,
N. Their defining expressions contain also the Voigt profile and the Faraday-Voigt profile
(see §5.4 in Landi Degl'Innocenti & Landolfi, 2004), which involve the following parame-
ters: a (i.e., the reduced damping constant), vy, (i.e., the velocity that characterizes the
thermal motions, which broaden the line profiles), and vy, (i.e., the velocity of possible
bulk motions in the plasma, which produce a Doppler shift).

It is important to emphasize that the expressions for the emission and absorption
coefficients and those of the statistical equilibrium equations are written in the reference
system whose quantization axis is parallel to the magnetic field. The following equation
indicates how to obtain the density matrix elements in a new reference system:

[BLSpIQ(<J7 J/)}new - Z [BLSpg/(J7 J/):|old DgQ(R)*7 (15)
Q/

where Df,(R)* is the complex conjugate of the rotation matrix for the rotation R that
carries the old reference system into the new one.

8 Inversion

Our inversion strategy is based on the minimization of a merit function that quantifies
how well the Stokes profiles calculated in our atmospheric model reproduce the observed
Stokes profiles. To this end, we have chosen the standard y?function, defined as:

1= [P () — 89 (A
N 0

=1

where N, is the number of wavelength points and o7(),;) is the variance associated to the
J-th wavelength point of the i-th Stokes profiles. The minimization algorithm tries to find
the value of the parameters of our model that lead to synthetic Stokes profiles S;*" with
the best possible fit to the observations. For our slab model, the number of parameters
(number of dimensions of the x? hypersurface) lies between 5 and 7, the maximum value
corresponding to the optically thick case. The magnetic field vector (B, 0 and xp), the
thermal velocity (vy,) and the macroscopic velocity (vmac) are always required. This set
of parameters is enough for the case of an optically thin slab. In order to account for
radiative transfer effects, we need to define the optical depth of the slab along its normal
direction and at a suitable reference wavelength (e.g., the central wavelength of the red
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blended component for the He 1 10830 A multiplet). In addition, we may additionally need
to include the damping parameter (a) of the Voigt profile if the wings of the observed
Stokes profiles cannot be fitted using Gaussian line profiles.

8.1 Global Optimization techniques

In order to avoid the possibility of getting trapped in a local minimum of the y? hy-
persurface, global optimization methods have to be used. We have chosen the DIRECT
algorithm (Jones et al., 1993), whose name derives from one of its main features: dividing
rectangles. The idea is to recursively sample parts of the space of parameters, improving
in each iteration the location of the part of the space where the global minimum is po-
tentially located. The decision algorithm is based on the assumption that the function is
Lipschitz continuous (see Jones et al., 1993, for details). The method works very well in
practice and can indeed find the minimum in functions that do not fulfill the condition
of Lipschitz continuity. The reason is that the DIRECT algorithm does not require the
explicit calculation of the Lipschitz constant but it uses all possible values of such a con-
stant to determine if a region of the parameter space should be broken into subregions
because of its potential interest (see Jones et al., 1993, for details).

Since the intensity profile is not very sensitive to the presence of a magnetic field
(at least for magnetic field strengths of the order of or smaller than 1000 G), we have
decided to estimate the optical thickness of the slab, the thermal and the macroscopic
velocity of the plasma and the damping constant by using only the Stokes I profile, and
then to determine the magnetic field vector by using the polarization profiles. The full
inversion scheme begins by applying the DIRECT method to obtain a first estimation of
the indicated four parameters by using only Stokes I. Afterwards, some LM iterations are
carried out to refine the initial values of the model’s parameters obtained in the previous
step. Once the LM method has converged, the inferred values of vy, Vmae (together with
a and A7, when these are parameters of the model) are kept fixed in the next steps, in
which the DIRECT method is used again for obtaining an initial approximation of the
magnetic field vector (B,0p,xp). According to our experience, the first estimate of the
magnetic field vector given by the DIRECT algorithm is typically very close to the final
solution. Nevertheless, some iterations of the LM method are performed to refine the
value of the magnetic field strength, inclination and azimuth. In any case, although we
have found very good results with this procedure, the specific inversion scheme is fully
configurable and can be tuned for specific problems.

Our experience has proved that the following strategy is appropriate for inverting
prominences. Two initial DIRECT+LM cycles with weights (1,0,0,0) to invert the ther-
modynamical parameters. Then, two DIRECT+LM cycles in which B, 65 and xp are
left free with weights (0,0.1,0.1, 1) which tries to set the correct polarity of the field given
by Stokes V. An additional LM cycle in which we fit only 65 and xp with the weights
(0,1,1,0.3) and a last LM cycle with weights (0,0.3,0.3,1) leaving the full magnetic field
vector free.
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8.2 Convergence

We let the DIRECT algorithm locate the global minimum in a region whose hypervolume
is V. This hypervolume is obtained as the product of the length d; of each dimension
associated with each of the N parameters:

v=]]d (17)

When the hypervolume decreases by a factor f after the DIRECT algorithm has discarded
some of the hyperrectangles, its size along each dimension is approximately decreased by a
factor fY/N. In order to end up with a small region where the global minimum is located,
many subdivisions are necessary, thus requiring many function evaluations.

The most time consuming part of any optimization procedure is the evaluation of the
merit function. The DIRECT algorithm needs only a reduced number of evaluations of
the merit function to find the region where the global minimum is located. For this reason,
we have chosen it as the initialization part of the LM method. Since the initialization
point is close to the global minimum, the LM method, thanks to its quadratic behavior,
rapidly converges to the minimum.

8.3 Stopping criterium

We have used two stopping criteria for the DIRECT algorithm. The first one is stopping
when the ratio between the hypervolume where the global minimum is located and the
original hypervolume is smaller than a given threshold. This method has been chosen
when using the DIRECT algorithm as an initialization for the LM method, giving very
good results. The other good option, suggested by Jones et al. (1993), is to stop after a
fixed number of evaluations of the merit function.

9 Ambiguities in the Hanle effect in the saturation
regime

In the saturation regime of the Hanle effect, Stokes ) and U are insensitive to the field
strength, but are sensitive to the geometry of the field. For a J =0 — J = 1 transition,
the linear polarization can be written as:

Q =
U =

(3 cos’ O — 1) sin? ©p cos 2P

N[RN[R

(3 cos?Op — 1) sin? © 5 sin 20 . (18)

These expressions contain a mixture of angles to make it clear that the polarization
amplitude depends on both the angle between the vertical and the magnetic field and
between the magnetic field and the line-of-sight (LOS).
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The coordinates of the magnetic field vector B in the reference system of the vertical
and the reference system of the LOS are:

B = DB(sinfpgcosppi+ sinfpsin¢pj + cosOpk)
B = B(sinO®gcos®pi’ +sin Opsin ®pj’ + cos Ogk’), (19)

where the unit vectors are related by a simple rotation:

i’ = cosfi— sinbk

k' = sinfi—+ cosbk. (20)
Introducing these relations on the expression for the magnetic field, we find that the

following has to be fulfilled, given that the magnetic field vector is the same in both
reference systems:

sinfgcospp = sinOpgcosPpcost + cosOp + sinf
sin9381n¢3 = SiH@BSiIch)B
cosfg = cosOpcosl —sinOpgcosPpsind. (21)

Solving the previous three equations in the two directions, we find the following trans-
formations between the angles in the vertical reference system and the LOS reference
system:

cos©Op = cosfcosfp + sinfsinfpcos g

sin®p = +1/1—cos20p

cos fsinflg cos g — cosfpsin b

br —
oS Th sin ©p
. sin 93 sin ¢B
b, = 2~ 77 22
S En sin Opg (22)
and
cosflp = cosfcosOp —sinfsinO©gcos Py

sinfg = ++4/1—cos?0p

cos0sin Opg cos ®p + cos Op sin 6

cosgp = sin 6
B

singp = sin@'Bsin@B. (23)
sin 0p

Note that, since ©p € [0,7], we can safely use the square root and take the positive
value. In order to transform from one reference system to the other, we can compute the
inclination easily by inverting the sinus or the cosinus. However, the situation is different
for the azimuth, because the range of variation is [—7, 7]. Therefore, one has to compute
the cosinus and the sinus separately and the decide which is the correct quadrant fo the

angle in terms of the signs of both quantities.
Four possible kinds of ambiguities can exist for the Stokes () and U parameters. The
idea is that @ can be modified and still obtain the same @ and U by properly adjusting
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the value of ©p. It is clear that, given that the term that can be used to compensate
for the change in the azimuth on the LOS reference system is the same for Stokes () and
U, we can only compensate for changes in the sign. Therefore, we have the following
potential ambiguities:

P, = Pp

(1)33 = q)B — 7T/2

Py = P+ 7/2

(I)SB = (I) B + . (24)
For each case, we have to compute the value of ©/; that keeps the value of @) and U
unchanged. Therefore, once we find a solution to the inversion problem in the form of
the pair (0p, ¢p), we can find the remaining solutions in the saturation regime following
the recipes that we present now. Remember that, unless one knows the polarity of the
field, or in other words, the sign cos © g, the number of potential ambiguous solutions is
8. If the polarity of the field is known, the number is typically reduced to 4 (or 2 if no
90° ambiguity is present).

10 9, =dp
Under this change, we have that
cos 2P’y = cos2®p, sin2dp =sin2dp, cos Py =cosPp, sindy =sindp. (25)

Making use of the previous relations between the angles wrt to the vertical and the LOS,
we have to solve the following equation:

(3 cos® 0 — 1) sin® @ = (3 cos® g — 1) sin® Op, (26)
which can be written as:
[3 (cos ©'5 cos O — sin Osin O cos B ) — 1] sin? @’ = [3 (cos Op cos § — sin fsin O cos Pp)* — 1] sin? €
(27)

After some algebra and doing the substitution ¢ = sin ©';, we end up with the following
equation to be solved:

At* + Bt* + O*V1 — 12 = K, (28)
where
A = —3cos?0+ 3sin?fcos’ Pp
B = 3cos’f—1
C = —6cosfsinfcosdp
K = [3 (cos©pcosh —sinfsin Op cos<I>B)2 — 1} sin? ©5. (29)

The previous equation can be solved if we make the change of variables t = +1/Z, resulting
in:

(C? + A Z* + (=C? +2AB)Z3 + (—2AK + B*)Z? —2BKZ + K*=0.  (30)
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This polynomial of 4-th order can have four different solutions. From these solutions, we
have to take only the real solutions which are larger than 0, given the range of variation
of @B:

teR, 0<t<l1. (31)

Once the solutions for ¢ are found, we make ©; = arcsint. Note that, for a fixed value of
t, two values of ©’; are possible. We choose the correct one by evaluating the expressions
for () and U and testing which of the two possible choices give the values equal (or very
similar) to the original ones.

The angles (0, ¢p) are obtained by doing the transformation from (0%, ®p) to the
vertical reference system.

/
Under this change, we have:
c0s 2Py = cos2®p, sin2d =sin2dp, cosPy = —cosPp, sin Py = —sinPp.

(32)
Following the same approach, we have to solve for ©; in

[3 (cos ©'5 cos O + sin fsin O cos D) — 1] sin? ©% = [3 (cos Op cos ) — sin#sin O p cos D) — 1] sin? €

(33)
The solution are obtained as the roots of the same equations as before but now
A = —3cos’0+ 3sin®fcos’ Py
B = 3cos?f—1
C = 6cosbsinfcosPp
K = [3(cosOpcosf —sinfsinOp cos Pp)” — 1] sin* ©p. (34)

The angles (05, ¢p) are obtained by doing the transformation from (0’5, &5 + ) to
the vertical reference system.

/
12 @y =dp+7/2
Under this change, we have:
c08 20’y = —cos2®p, sin2dy = —sin2dPp, cos Py = —sindPp, sindy = cos Pp.

(35)
Following the same approach, we have to solve for ©; in

[3 (cos ©'5 cos O + sin  sin O sin ®)* — 1} sin? @ = [3 (cos Op cos § — sinfsin Op cos P)° — 1] sin” 6
(36)
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The solution are obtained as the roots of the same equations as before but now

A = —3cos’H+ 3sin®fsin® by

B = 3cos’H—1

C = 6cosfsinfsindp

K = — [3 (cos ©p cos @ — sin O sin O g cos CI>B)2 — 1] sin’Op. (37)

The angles (0, ¢) are obtained by doing the transformation from (0’5, @5+ 7/2) to
the vertical reference system.

I
13 ®) =dp —1/2
Under this change, we have:
c08 20’y = —cos2®p, sin2dy = —sin2dPp, cos Py =sindp, sindy = —cos Pp.

(38)
Following the same approach, we have to solve for ©; in

[3 (cos ©' cos 6 + sin O sin O’ sin p)” — 1} sin® O = [3 (cos ©p cos § — sin § sin O 5 cos Dp)’ — 1] sin* €

(39)
The solution are obtained as the roots of the same equations as before but now
A = —3cos’0+ 3sin?fsin’ Py
B = 3cos’0—1
C = —6cosfsinfsindp
K = —[3(cosOp cos @ — sin @ sin O cos Pg)° — 1] sin* O p. (40)

The angles (05, ¢p) are obtained by doing the transformation from (05, &5 —7/2) to
the vertical reference system.
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